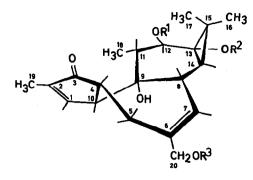
THE NEW DITERPENE 4-DEOXYPHORBOL AND ITS HIGHLY UNSATURATED IRRITANT DIESTERS

G. Fürstenberger and E. Hecker

Institut für Biochemie, Deutsches Krebsforschungszentrum Heidelberg, Germany

(Received in UK 31 January 1977; accepted for publication 4 February 1977)

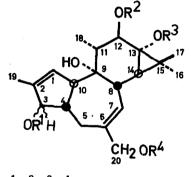

From the latex of Euphorbia tirucalli L. <u>grown in Madagascar</u> a new class of esters of phorbol and ingenol carrying highly unsaturated fatty acids were isolated¹⁾. In latex of E. tirucalli L. <u>grown in South Africa</u>, besides unsaturated fatty acid esters of phorbol, similar esters of a new diterpene parent were detected. Alternatively, ingenol is present in this latex only in very small amounts.

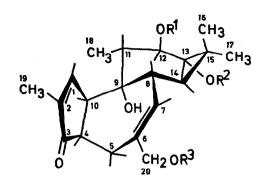
By systematic fractionation¹⁾²⁾³⁾ of the acetone extract under carefully controlled conditions of pH and extensive exclusion of oxygen and monitored by our biological assay for irritant activity⁴⁾ four new highly irritant euphorbia factors Ti_1-Ti_4 were isolated. In addition to Ti_1 and Ti_4 , their biologically inactive isomers $\alpha-Ti_1$ and $\alpha-Ti_4$ were obtained.

 $\underbrace{\text{Ti}_{1:}}_{32} C_{32} H_{42} O_7 (\text{hrms}); \text{ MS } (\text{m/e}): 538 (\text{M}^+), 478 (\text{M}^+-60), 373 (\text{M}^+-165); \text{ IR } (\text{CH}_2\text{Cl}_2):v_{\text{max}}: 3670, 3600, 3400, 1715, 1635, 1615, 1585, 1005, 975, 815 cm^{-1}. UV (\text{CH}_3\text{OH}):\lambda_{\text{max}} (\varepsilon_{\text{max}}): 204 (14050), 227 (8380), 304 nm (26760); ^{1}\text{H-NMR} (\delta, \text{CDCl}_3): 7.56 (\text{s, broad, 1-H}), 7.3 (\text{m, 4'-H}), 7.0-5.7 (4 olefinic protons), 5.59 (d, J=11Hz, 2'-H), 5.53 (m, 7-H), 5.47 (d, J=10Hz, 12-H), 4.00 (\text{s, } 20-H_2), 3.26 (\text{m, 10-H}), 2.17 (\text{CH}_3\text{CO}), 1.72 (\text{m, 19-H}_3), 1.20 (\text{s, 16-H}_3, 17-H_3), 5.67, 2.60 ppm (OH, exchangeable).$

<u> α -Ti_1</u>: MS (m/e): 538 (M⁺), 478 (M⁺-60), 373 (M⁺-165); IR (CH₂Cl₂): ν_{max} : 3680, 3600, 3420, 1715, 1645, 1615, 1585, 1005, 975, 815 cm⁻¹; UV (CH₃OH): λ_{max} (ϵ_{max}): 233 (8460), 304 nm (19670); ¹H-NMR (δ ,CDCl₃): characteristic differences to the spectrum of Ti₁ in regard to some protons of the diterpene parent: the broad s of 1-H is shifted upfield to 7.05 ppm, the m of 7-H to 5.13 ppm whereas the signal of 10-H is shifted downfield and appears at 3.51 ppm.

Treatment with NaOCH₃/CH₃OH of Ti₁ and α -Ti₁ and subsequent acetylation with acetic anhydride/pyridine yields in both cases the previously known 12,13,20-tri-0-acetyl-4-deoxy-4 α -phorbol ($\underline{1}$)⁵). This result shows that the parent alcohols of Ti₁ and α -Ti₁ are 4-deoxy-derivatives of phorbol. By irradiation with UV-light (λ = 254 nm) of α -Ti₁ followed by base catalyzed transesterification and acetylation with acetic anhydride the lumiproduct 12,13,20-tri-0-acetyl-4-deoxy-lumiphorbol ($\underline{5}$)⁶) is obtained. Hence it is proved that the parent alcohol of α -Ti₁ is 4-deoxy-4 α -phorbol. In accordance with this structure, the chemical shifts of the signals of 1-H, 7-H and 10-H in nmr-spectra of α -Ti₁ and 12,13,20-tri-0-acetyl-4-deoxy-4 α phorbol ($\underline{1}$) are identical. Under the conditions of the conversion of α -Ti₁ to $\underline{5}$, Ti₁ yields $\underline{1}$ but no lumiproduct. The base catalyzed epimerization of Ti₁ to α -Ti₁ in CD₃OD yields 4deutero- α -Ti₁ ($\underline{2}$) as proved by ms-data: 539 (M⁺), 479 (M⁺-60), 374 (M⁺-165) and nmr-data (δ , CDCl₃: 7.02 (s, broad, 1-H), 5.17 (m, 7-H), 3.45 ppm (m, 10-H). The signal m of 4-H at 2.7 ppm as present in the nmr-spectrum of α -Ti₁ is missing and the dd (J_{4-5b}=^{5hz}, J_{5a-5b}=




Ti₁: $R^1 = CO - CH^{\underline{Z}}CH - CH^{\underline{E}}CH - CH = CH - CH_2 - CH_2 - CH_3$ $R^2 = Ac; R^3 = H$ 7 : $R^1 = R^2 = R^3 = Ac$

 \underline{i} : R⁻=R⁻=R^o=Ac

Ti₂: $R^1 = Ac$; $R^2 = CO - CH^{Z} - CH - CH^{E} - CH - CH - CH_{2} - CH_{2} - CH_{3}$; $R^3 = H_{2}$

Ti₃: $R^{1}=Ac$; $R^{2}=CO-(CH=CH)_{5}-CH_{2}-CH_{2}-CH_{3}$; $R^{3}=H$ Ti₄: $R^{1}=Ac$; $R^{2}=CO-(CH=CH)_{4}-(CH_{2})_{4}-CH_{3}$; $R^{3}=H$

- - $\begin{array}{rcl} & & : & \mathsf{R}^1 = \mathsf{CO} \mathsf{CH}^{\underline{\mathsf{Z}}} \mathsf{CH} \mathsf{CH}^{\underline{\mathsf{E}}} \mathsf{CH} \mathsf{CH} = \mathsf{CH} \mathsf{CH}_2 \mathsf{CH}_2 \mathsf{CH}_3; \\ & & & \mathsf{R}^2_2 = \mathsf{Ac}; & \mathsf{R}^3_2 = \mathsf{H}; & \mathsf{R}^4_2 = \mathsf{D} \end{array}$
 - $\begin{array}{rcl} \underbrace{3} & : & R^{1} = \text{CO-CH}^{\underline{Z}}\text{CH-CH}^{\underline{E}}\text{CH-CH} = \text{CH-CH}_{2} \text{CH}_{2} \text{CH}_{3}; \\ & & R^{2} = R^{3} = R^{4} = H \\ 4 & & & R^{1} = A_{C} \cdot R^{2} = R^{3} = R^{4} = H \end{array}$

$$\alpha^{-Ti}_{4}: \underset{R^{3}=R^{4}=H}{\overset{R^{1}=Ac}{R^{2}=CO-(CH=CH)}_{4}-(CH_{2})_{4}-CH_{3}};$$

15hz) of 5b-H at 2,45 ppm is reduced to a dublet $(J_{5a,5b}=15hz)$. This proves that Ti₁ contains 4-deoxyphorbol as diterpene parent. The characteristic differences of the chemical shifts of 1-H, 7-H and 10-H in the nmrspectra of the epimers Ti₁ and α -Ti₁ are to be understood as shielding effects of the 1,2-and 6,7-double bonds and deshielding of the adjacent 9 α -OH respectively, caused by the change of the stereochemistry of the diructural formula)⁷

terpene parent upon epimerization at C-4 (see structural formula) 7 .

The (2Z,4E)-2,4,6-decatriency] group is confirmed by the spectral data of Ti₁ and α -Ti₁ (ms, uv) and by the ms- and nmr-data of the identical methylesters acquired upon base-cata-lyzed transesterification of Ti₁ and α -Ti₁: MS (m/e): 180 (M⁺); ¹H-NMR (δ , CDCl₃): 7,35 (dd, J_{4;5'}=16Hz, J_{3;4'}=11Hz, 4'-H), 6,7-5,6 (4 olefinic protons), 5,54 (d, J_{2;3'}=11Hz, 2'-H), 3,66 (s, OCH₃, 3), 2,1 (m,8'-H), 0,90 ppm (t, J=7Hz, 10'-H₃).

Selective transesterification (NaOCH₃/CH₃OH) of the acetyl groups in position 13 of both Ti₁ and α -Ti₁ yields 12-0-{(2Z,4E)-2,4,6-decatrienoyl}-4-deoxy-4 α -phorbol (<u>3</u>): MS (m/e): 496 (M⁺), ¹H-NMR (δ , CDCl₃, see table 1): 7,05 (s, broad, 1-H) 5.13 (m,7-H), 3.50 ppm (m, 10-H) confirm the 4 α -configuration, the doublet of 12-H is shifted upfield to 5.05 ppm in accordance with earlier observations, that the signal of the vicinal 12-H is shifted to higher field upon hydrolysis of the 13-acetyl or acyl group⁸), the signal of the acetyl group is missing. The chemical shift of $20-H_2$ remains unchanged. These data confirm the 12-position of the (27,4E)-2,4,6-decatrienoyl residue and the 13-position of the acetyl group: Ti₁ is <u>13-0-acetyl-12-0-((27,4E)-2,4,6-decatrienoyl)-4-deoxyphorbol</u> and α -Ti₁ the corresponding 4-epimer <u>13-0-acetyl-12-0-((27,4E)-2,4,6-decatrienoyl)-4-deoxy-4\alpha-phorbol</u>.

Table 1:	MS- and M	MR-data,	relevant fo	or the	position	of the	ester	residues	and the stereoche-
	mistry of	f the dit	erpene parer	nt in T	ſi ₁ -Ti ₄ ,	α-Ti ₁ ,	α-Ti _d	l and the	transesterifica-
	tion proc	lucts <u>3</u> a	nd <u>4</u> (12-mon	noester	rs).	-	'		

factor/ MS (m/e)		NMR (δ , CDC1 ₃ /D ₂ 0), TMS δ = 0,00 ppm							
cpd	м+	1-H	7-H	10-H	12-Н	20-н	сн _з со		
Ti ₁	538	7.56	5.53	3.26	5.47	4.00	2.15		
Ti ₂	538	7.60	5.52	3.25	5.54	4.00	2.12		
Ti ₃	590	7.60	-	3.26	5.47	4.02	2.15		
Ti ₄	592	7.60	-	3.28	5.48	4.02	2.15		
α-Ti ₁	538	7.05	5.13	3.51	5.54	3.95	2.07		
∝-Ti₄	592	7.05	5.15	3.50	5.52	3.95	2.09		
<u>3</u>	496	7.05	5.13	3.50	5.07	3.95	missing		
<u>4</u>	372(M [±] 18)	7.05	5.17	3.50	5.05	3.93	2.12		

In a similar manner the rest of the new euphorbia factors was structually elucidated. $\frac{\text{Ti}_2: \text{C}_{32}\text{H}_{42}\text{O}_7(\text{hrms}):\text{MS}(\text{m/e}): 538(\text{M}^+), 478(\text{M}^+-60), 373(\text{M}^+-165), 149; \text{IR}(\text{CH}_2\text{Cl}_2): \nu_{\text{max}}: 3600, 3400, 1705, 1625, 1605, 1575, 1005, 975, 815 cm^{-1}; UV(\text{CH}_3\text{OH}): \lambda_{\text{max}} (\varepsilon_{\text{max}}): 230 (9600), 306$ nm (25000); ¹H-NMR (δ ,CDCl₃): no characteristic differences to the spectrum of Ti₁. The preceding data and those given in table 1 prove that Ti₂ is <u>12-0-acetyl-13-0-((2Z,4E)-2,4,6-de-</u> <u>catrienoy}-4-deoxyphorbol</u>.

 $\frac{\text{Ti}_{3:}}{\text{Ti}_{3:}} \text{ MS(m/e): 590 (M^+), 530(M^+-60), 373(M^+-217); IR(KBr): }\nu_{max}: 3420, 1710, 1640, 1610, 1595, 1575, 1545, 1000 cm^{-1}; UV(CH_3OH): \lambda(\varepsilon): 194 nm (16300); \lambda_{max} (\varepsilon_{max}): 204(15400), 228 (11900), 252(10550), 260(10500), 357 nm (34000); {}^{1}\text{H-NMR}(\delta, \text{CDCl}_{3}): differences as compared to Ti_{1}: between 7.5 and 5.5 ppm 10 olefinic protons of the acid residue. In accordance with the preceding data and those given in table 1 Ti_{3} is <u>12-0-acetyl-4-deoxy-13-0-(2,4,6,8,10-tetra-decapentaenoyl)phorbol</u>.$

 $\underline{\text{Ti}_{4:}}_{3600, 3400, 1715, 1695, 1630, 1605, 1590, 1005 \text{ cm}^{-1}; UV(\text{CH}_{3}\text{OH}):\lambda_{\text{max}} (\varepsilon_{\text{max}}): 230(9530), 332 \text{ nm} (23000); {}^{1}\text{H-NMR}(\delta,\text{CDCl}_{3}): \text{differences as compared to Ti}_{1}: \text{between 7.5 and 5.5 ppm 8 ole-finic protons of the acid residue. The combination of these data with those given in table 1 proves that Ti}_{4} is <u>12-0-acetyl-4-deoxy-13-0-(2,4,6,8-tetradecatetraenoyl)phorbol.</u>$

 $\underline{\alpha-\text{Ti}_{4}}: \text{MS}(\text{m/e}): \overline{592(\text{M}^{+})}, 532(\text{M}^{+}-60), 373(\text{M}^{+}-219); \text{UV}(\text{CH}_{3}\text{OH}): \lambda_{\text{max}}(\varepsilon_{\text{max}}): 230(9530), 330$ nm (19300); ¹H-NMR(ô,CDCl₃): differences as compared to the spectrum of $\alpha-\text{Ti}_{1}$: between 7.5 and 5.5 ppm 8 olefinic protons of the acid residue. In confirmity of the preceding data and those given in table 1 $\alpha-\text{Ti}_{4}$ is <u>12-0-acetyl-4-deoxy-13-0-(1,4,6,8-tetradecatetraenoyl)-4\alpha-</u> phorbol.

The irreversible epimerization of Ti_1 to α - Ti_1 occurs under very mild basic and acidic conditions ⁹). Therefore, the parent alcohol 4-deoxyphorbol cannot be made available directly by transesterification of its naturally occuring esters. It may be obtained by partial synthesis starting with 3,12,13,20-tetra-O-acety]-3-deoxo-4-deoxy-3(ξ)-hydroxyphorbol (5), the product of reductive scission of Ti₁ with LiAlH₄ followed by acetylation with acetic anhydride/pyridine. (5): C28H380g(hrms); MS(m/e): 518(M⁺); IR(KBr): v_{max}: 3420, 1730 cm⁻¹; UV(CH₂OH): $\lambda(\varepsilon)$: 194 nm (16210); ^IH-NMR (δ ,CDC1₃): 5.80 (s, broad, 1-H), 5.44(d, J=5-6Hz, 7-H), 5.34 (d, J=10Hz, 12-H), 5.18(m, 3-H), 4.42(s, 20-H₂), 3.00(m, 10-H), 2.27 (m, 4-H), 2.24(m, 8-H), 2.10-2.05(4 $CH_{3}CO$), 1.62(m, 19-H₃), 1.62(m, 11-H), 1.21(s, 16-H₃, 17-H₃), 0.95(d, J=6Hz, 18-H₂), 0.95(d, J≈5-6Hz, 14-H), 5.22 ppm (OH, exchangeable). Treatment of 5 with HClO₄/dioxane furnishes 12,13,20-tri-O-acetyl-3-deoxo-4-deoxy-3(ξ)-hydroxyphorbol ($\underline{6}$): MS(m/e): $476(M^{+})$; ¹H-NMR(δ ,CDCl₂): differences as compared to ($\frac{5}{2}$): the signal of 3-H is found at 4.10 ppm as compared with 5.28 ppm in ($\frac{5}{2}$). Oxidation of the free hydroxylfunction 3 in $\frac{6}{2}$ with alkalifree Mn0₂/CH₂Cl₂ yields 12,13,20-tri-0-acetyl-4-deoxyphorbol (<u>7</u>): C₂₈H₃₄O₆(hrms): MS(m/e): 474 (M⁺); IR(KBr): ν_{max}: 3415, 1745, 1730, 1710, 1635 cm⁻¹; UV(CH₃OH): λ(ε): 198,5 nm (11600); λ_{max} (ϵ_{max}): 230 (6050), 310 nm (140); ¹H-NMR(δ ,CDCl₃): 7.53(s, broad, 1-H), 5.52(dd, J=2Hz, J=7Hz, 7-H), 5.38(d, J=10Hz, 12-H), 4.43(s, 20-H₂), 3.23(m, 10-H), 2.33(m, 4-H), 2.34(m, 8-H), 2.85(dd, J=16Hz, J=6-7Hz, 5a-H), 2.2(m, 5b-H), 2.10, 2.08, 2.05 (CH₂CO), 1.76(m, 19-H₂) 1.57(m,11-H), 1.24, 1.22(s,16-H₂, 17-H₂), 1.05(d, J=5Hz, 14-H), 0.92 (d, J=6Hz, 18-H₃), 5.55 ppm (OH, exchangeable); CD(C₂H₅OH) λ :202, 241, 318 nm $\Delta\epsilon$: -1943, +3.10, -2.02. The chemical shifts of the protons 1-H, 7-H and 10-H in the nmr spectrum of Z support the proposed structure of the new diterpene parent of the euphorbia factors $Ti_1 - Ti_4$. The biologically inactive 4-deoxy-4 α -phorbol-derivatives α -Ti₁ and α -Ti₄ are products of artificial isomerization during the isolation procedure⁹. Esters of 4-deoxy-4 α -phorbol have been isolated from the seed oil of Croton tiglium⁴⁾. - The biological data of the new euphorbia factors will be published elsewhere.

ACKNOWLEDGEMENT

We are greatly indebted to Prof. Dr. A.W. Bayer, University of Pietermaritzburg and to Dr. R.A. Dyer, Department of Agricultural Technical Services, Botanical Research Institute Pretoria, Republic of South Africa for supply of latex.

REFERENCES:

- 1) G. Fürstenberger and E. Hecker, submitted for publication
- 2) G. Fürstenberger and E. Hecker, Planta Medica 22, 241 (1972)
- G. Fürstenberger, E. Henseleit and E. Hecker, 11. Wissenschaftliche Tagung der Deutschen Krebsgesellschaft Hannover 1971, abstracts p. 71
- 4) E. Hecker, R. Schmidt, Progr.Chem.Org.Natur.Prod. 31, 377 (1974)
- 5) M. Gschwendt, E. Härle and E. Hecker, Z.Naturforsch. 23B, 1579 (1968)
- 6) E. Härle and E. Hecker, Liebigs Ann.Chem. 748, 134 (1971)
- 7) G. Fürstenberger and E. Hecker, unpublished results
- Ch. V. Szcepanski, H.U. Schairer, M. Gschwendt and E. Hecker, Liebigs Ann.Chem. <u>705</u>, 199 (1967)
- G. Fürstenberger and E. Hecker, unpublished results